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SUMMARY

This paper presents a survey of solution methods for calculating the pressure in the time-dependent
Navier–Stokes equations. The primary focus is on the treatment of the pressure-Poisson equation de-
riving from index-1 DAE formulations of the Navier–Stokes equations. Based on extensive operational
experience with a variety of solution strategies, the combination of a stabilized pressure-Poisson op-
erator with an A-conjugate projection and SSOR preconditioned conjugate gradient method has been
found to yield the overall best performance relative to the resolve cost of a high performance direct
solver. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Incompressible �ow is one of the most frequently encountered �ow regimes encompassing
problems that range from atmospheric dispersal to food processing, aerodynamic design of
automobiles, and manufacturing processes such as chemical vapor deposition, mold �lling
and casting. The need for scalable time-accurate solution algorithms is growing due to the
emerging use of large-eddy simulation (LES) and time-dependent Reynolds averaged Navier–
Stokes (RANS) calculations in engineering applications.
In large-eddy simulation, a signi�cant fraction of the energy spectrum must be resolved

in order to apply sub-grid scale models that are based on a balance between the produc-
tion and dissipation of turbulent kinetic energy. Thus, high resolution grids are required even
for �ows with moderate Reynolds numbers. In addition to the high degree of spatial dis-
cretization, the temporal resolution for LES is also demanding, ultimately requiring e�ective
mapping of �ow-solution algorithms to massively parallel supercomputer architectures.
Although the spatial resolution required for RANS calculations is somewhat relaxed relative
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1178 M. A. CHRISTON

to LES, the time-accurate treatment of the Reynolds averaged Navier–Stokes equations also
demands computationally e�cient �ow solution algorithms.

2. FORMULATION

A brief review of the incompressible Navier–Stokes formulation and projection methods is
presented before proceeding with a description of the time-integration methods. To begin,
given a �ow domain � with boundary �=�1∪�2 the incompressible Navier–Stokes equations
are

∇ · u=0; (1)

@u
@t
+ u · ∇u=−∇P + �∇2u+ f ; (2)

where u=(u; v; w) is the velocity, � is the kinematic viscosity, f is the body force, p is the
pressure, � is the mass density, and P=p=�.
The system of equations above are subject to boundary conditions that consist of a speci�ed

velocity on �1 as in Equation (3), or pseudo-traction boundary conditions on �2 as in Equations
(4) and (5).

u= û on �1 (3)

−P + �
@u
@n
=fn on �2 (4)

�
@u
@�
=f� on �2 (5)

Here, @u=@n and @u=@� represent the derivative of u in the normal (n) and tangential (�)
directions respectively. Similarly, fn and f� represent the normal and tangential components
of the boundary traction. Homogeneous traction boundary conditions correspond to the well
known natural boundary conditions that are typically applied at out�ow boundaries.
In addition to the boundary conditions, initial conditions, u(x; 0)= u0(x); are required. For

a well-posed time-dependent incompressible �ow problem, the prescribed initial velocity �eld
must satisfy

∇ · u0 = 0 in �; (6)

and

n · u(x; 0)= n · uo(x) on �: (7)

If �2 =0, e.g., for enclosure �ows with n · u prescribed on all surfaces, then global mass
conservation enters as an additional solvability constraint as∫

�
n · uo d�=0: (8)
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The methods for obtaining the weak-form of the conservation equations are well known
and will not be repeated here (see for example, Gresho and Sani [1]). The spatially discrete
forms of Equations (1) and (2) are

CTu=0; (9)

and

M u̇+ A(u)u+ Ku+ CP=F; (10)

where M is the unit mass matrix, A(u) and K are the advection and the viscous di�usion
operators respectively, and F is the body force. C is the gradient operator, and CT is the
divergence operator. In the subsequent sections, a row-sum lumped, i.e., diagonal, mass matrix,
ML, will be used as well. In order to simplify the nomenclature, u and P are understood to
be discrete approximations to the continuous velocity, and pressure.

FEM projection method

A detailed review of projection methods is beyond the scope of this paper, but a partial list
of relevant work is provided. Projection methods, also commonly referred to as fractional-
step, pressure correction methods, or Chorin’s method [2], have grown in popularity over the
past 10 years due to the relative ease of implementation and computational performance. This
is re�ected by the volume of work published on the development of second-order accurate
projection methods, see for example References [3–20].
The philosophy behind projection algorithms is to attempt to provide a legitimate way to

decouple the pressure and velocity �elds in the hope of providing an e�cient computational
method for transient, incompressible �ow simulations. Exact projection methods decouple the
solution of the velocity and pressure �elds by �rst computing an approximate velocity �eld
that is not div-free, and then performing an L2 projection onto a div-free subspace. The
optimal Projection-2 (P2) method identi�ed by Gresho [5; 6] forms the starting point for a
discussion of the pressure solution algorithms.

Algorithm 1. Projection-2 (P2)

1. Given a div-free velocity, un, and its corresponding pressure �eld, Pn, solve

[M +�t�K̂]ũn+1 = [M −�t(1− �)K̂]un

+�t{�Fn+1 + (1− �)Fn − A(un)un −MM−1
L CPn} (11)

for an approximate velocity �eld at time t n+1.
2. Using the approximate velocity, ũn+1, solve the global PPE problem for the Lagrange
multiplier, �.

[CTM−1
L C]�=CT ũn+1: (12)

3. Perform the projection step to obtain the �nal div-free velocity �eld, un+1.

un+1 = ũn+1 −M−1
L C�: (13)
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1180 M. A. CHRISTON

4. Update the pressure at time t n+1 via

Pn+1 =Pn +
2
�t

�; (14)

5. Repeat steps 1–4 until a maximum simulation time limit or maximum number of time
steps is reached.

Remark

1. In Equation (11), K̂ represents the usual viscous operator obtained in the weak formu-
lation augmented by balancing tensor di�usivity (BTD) that derives from the second-
order, explicit time integrator applied to the advective terms. See Gresho et al. [21] or
Christon [22] for additional details on BTD. Typically �=1=2 is chosen corresponding
to a second-order trapezoid method applied to the viscous terms. The inclusion of the
BTD contributions in K̂ permits stable computations for CFL numbers from 5 to 10.

2. Equation (12) is the consistent, discrete form of the pressure-Poisson equation (PPE)
for the projection-2 algorithm. The consistent PPE incorporates the e�ect of the essential
velocity boundary conditions from Equation (3), and automatically builds in the boundary
conditions from Equations (3) and (4)—see Gresho et al. [6]. It represents an algebraic
system of equations that is solved for the element-centered Lagrange multiplier during
the time-marching procedure.

Turning attention to the explicit time integration algorithm, it is assumed that the explicit
algorithm begins with a given velocity �eld, u0, and the associated initial pressure �eld, P0.
For a well-posed initial-boundary value problem, the initial velocity �eld must be div-free
and satisfy the essential boundary conditions.

Algorithm 2. Explicit Time Integration

1. Calculate the partial acceleration, i.e., the acceleration neglecting the pressure gradient,
at time t n.

ãn=M−1
L F̃n (15)

where

F̃n=Fn − K̂un − A(un)un (16)

2. Solve the global PPE for the current pressure �eld.

[CTM−1
L C]Pn=CT ãn (17)

3. Update the nodal velocities.

un+1 = un +�t{ãn −M−1
L CPn} (18)

4. Repeat steps 1–3 until a maximum simulation time limit or maximum number of time
steps is reached.
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The saddle point problems

The PPE problem in the projection-2 algorithm, Algorithm (1), arises due to the use of a
Helmholtz decomposition of the velocity into div-free and curl-free components. In a �nite
element context, the Helmholtz velocity decomposition with the concomitant div-free con-
straint, CTun+1 =0; is written as[

ML C

CT 0

]{
un+1

�

}
=

{
MLũn+1

0

}
; (19)

where, in general, CT ũn+1 �=0.
The Schur complement of the projection operator in Equation (19) yields the consistent

pressure-Poisson equation (PPE) in Algorithm (2). In the ensuing discussion, the term projec-
tion operator is used loosely to describe Equation (19). However, the projection operator is
not to be confused with the real discrete projection operators, Ph= I−M−1

L C[CTM−1
L C]−1CT

and Qh= I −Ph (see Gresho and Chan [6]).
In the explicit time integration algorithm, Algorithm (2), a saddle-point problem analogous

to Equation (19) may also be formulated.[
ML C

CT 0

]{
an

Pn

}
=

{
MLãn

0

}
(20)

In this case, the acceleration and pressure are used rather than velocity and pressure increment
highlighting one of the primary di�erences between the projection-2 and the explicit methods.
The explicit method segregates acceleration and pressure which can be done legitimately while
the projection-2 method attempts to decouple velocity and pressure. Similar to the projection-2
method, the pressure-Poisson problem in Equation (17) is simply the Schur complement of
Equation (20). For both algorithms, the PPE and the saddle-point operators are symmetric
and in general singular due in part to the fact that the pressure is known only to within a
constant representing the hydrostatic pressure.

3. PRESSURE SOLUTION METHODS

In this section, a survey of solution methods for calculating the pressure (Lagrange multi-
plier) in the explicit=projection-2 algorithms is presented. The methods used include algebraic
multi-grid, a saddle-point conjugate gradient algorithm, and stabilized PPE operators with an
A-conjugate projection technique combined with the preconditioned conjugate gradient method.
A short review of the less successful approaches is presented �rst and followed by a presen-
tation of the Q1Q0 stabilization methods and the A-conjugate projection CG method.
Before addressing the solution methods, the pressure-Poisson equation possesses several

attributes that are worth noting. First, the PPE, [CTM−1
L C], is symmetric ([CTM−1

L C]ij=
[CTM−1

L C]ji regardless of the Reynolds number. The PPE can be singular, i.e., the rows
of the matrix sum to zero admitting a hydrostatic pressure mode, although the presence of
homogeneous natural boundary conditions weakly sets the hydrostatic pressure to zero. Kim
and Ro [23] have noted that for the pressure-correction equation the source data ultimately
controls the convergence of the solution method. Similar behavior is exhibited by the PPE
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where the right-hand-side data is based on either CT ũn+1 or CT ãn. In practice, the PPE is
much more di�cult to solve with iterative techniques than the momentum or scalar transport
equations because the right-hand-side varies spatially and is relatively noisy, i.e., has a large
spectral content. In addition, the right-hand-side data tends to change rapidly from time-step
to time-step making it problematic to use the previous pressure solution to initialize iterative
solvers – one of the primary motivations for using the projection CG method.

Q1Q0 stabilization

Although the Q1Q0 element has been condemned by theoreticians for its weakly singular
modes, this element has long been the workhorse for incompressible �ow and continues to
be widely used. The unstable modes of the Q1Q0 element for incompressible �ow have
been investigated by Sani et al. [24; 25] and more recently by Gri�ths and Silvester [26].
Gri�ths and Silvester demonstrate that for problems of physical interest, the Q1Q0 element
will converge to the true solution in the limit as h → 0. In addition, a new convergence proof
for the Q1Q0 element may be found in Gresho and Sani [1].
The focus here is on pressure stabilization techniques that are compatible with the Q1Q0

element and that circumvent the usual Babu�ska–Brezzi div-stability condition. The global
jump stabilization (�rst proposed by Hughes and Franca [27]) and the local jump stabilization
techniques of Silvester and his co-workers [28–30] are applied to the PPE problem. In e�ect,
the jump stabilization techniques provide an a priori �lter for the weakly unstable pressure
modes associated with the Q1Q0 element.
The stabilized Q1Q0 element yields a regularized saddle-point problem for the projection

method, [
ML C

CT −S

]{
un+1

�

}
=

{
MLũn+1

0

}
; (21)

where S is a symmetric positive semi-de�nite matrix. Here, pressure stabilization results in an
approximate projection method since the concomitant stabilized PPE is no longer constructed
using only the discrete div and grad operators. The Schur complement of Equation (21), i.e.,
the stabilized PPE, is

[CTM−1
L C + S]�=CT ũn+1 (22)

where S remains to be de�ned for the global and local jump stabilization techniques.
The global jump stabilization formulation attempts to control the jump in pressure across

element boundaries, and results in a PPE that is perturbed by a ‘pressure-di�usion’ operator.
The o�-diagonal entries in the global jump stabilization matrix are de�ned as

SIJ =�
|[CTM−1

L C]IJ |
�IJ

∫
�IJ
< I = < J = d�; (23)

where I and J identify adjacent elements that share a common face as shown in Figure 1(a).
Here, �IJ represents the shared inter-element boundary, <·= is the jump operator, and � is a non-
dimensional scaling parameter. For the Q1Q0 element, the pressure approximation is piecewise
constant with  I =1 inside �e and zero outside. In two dimensions, �IJ represents the length of
the element edge shared by element I and J , and in three dimensions, it represents the area of
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Figure 1. Element con�guration for pressure stabilization: (a) global jump; (b) local jump.

the shared face. The inclusion of the PPE term in Equation (23) yields proper dimensionality
of the stabilization matrix, accounts for scaling due to irregular elements, and still preserves
the symmetry of the original PPE. The diagonal contributions are calculated as

SII =�
∑
J

|[CTM−1
L C]IJ |
�IJ

∫
�IJ
< I = < J = d�; (24)

where the sum on J indicates a summation over all shared faces of element I . The global
jump stabilization is simple to implement when viewed from a linear algebra point of view
since the contributions to S are simply augmented row-entries from the original PPE. For
alternative scaling procedures, see Chan and Sugiyama [31].
In contrast to the global method, the local stabilization procedure relies on the construction

of macro-elements that contain at least one velocity node per edge of the macro element
in two dimensions and one velocity node per face in three dimensions. For local pressure
stabilization, the entries of the stabilization matrix are calculated according to Equations (23)
and (24) but only for the faces shared with elements in the same macro-element as shown
in Figure 1(b). In order to use the local jump stabilization formulation, a pre-processing step
that identi�es the macro-elements is required.
Since similar scaling is used for both the local and global jump stabilization, the only

remaining parameter to be determined is �. From the inherited scaling of the stabilization
matrix, �=0 provides the limit where no-stabilization is applied. For �=1, the stabilization
matrix will have entries of the same order as the original PPE. In the context of Stokes
�ow, Norburn and Silvester [30] bounded � by computing the extremal eigenvalues for the
stabilized Schur complement as a function of �. They found that 0:016�60:1 minimizes the
distance between the extremal eigenvalues. Computational tests have shown that, in general,
values of � in this range yield acceptable results for the stabilized PPE as well.
Figure 2 shows the variation of the iteration count for SSOR preconditioned conjugate

gradient as a function of � for a 2-D and 3-D �ow past a circular cylinder using both
local and global jump stabilization. This plot shows that for �¿0:05, there is very little
variation in the iteration count with respect to �. In addition, the bene�t of stabilization

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1177–1198



1184 M. A. CHRISTON

Figure 2. Variation of iteration count vs stabilization parameter for a 2-D Re=100 vortex shedding
mesh (Nel=11 200) and 3-D Re=100 �ow past a cylinder (Nel=22 380).

appears to be considerably larger for 3-D, a factor of six reduction in iteration count for 3-D
compared to a factor of about 1.3 for the 2-D case. The marked decrease in iteration count
in 3-D is undoubtedly a consequence of the increased size of the null-space for the PPE in
three dimensions. Operational experience has shown that 0:016�60:1 works well for most
applications while �¿0:25 can often yield inaccurate velocity �elds.
Figure 3 shows typical convergence histories for the unstabilized and stabilized PPE – here

�=0:05 with convergence criteria of ‖b−Ax‖=‖b‖610−12 and ‖xn− xn−1‖=‖xn‖610−12 used
for all computations. In two dimensions, the stabilization provides a modest 20% reduction
in the iteration count and concomitant computational work. In contrast, the three-dimensional
calculations show that the cost of solving the unstabilized PPE yields a method that cannot
be scaled to large problem sizes. As demonstrated above, the bene�ts of stabilization are
considerably greater in three-dimensions where a factor 7 to 10 reduction in iteration count is
observed for this problem. Since the computational cost of the stabilization occurs only during
initialization, the reduction in iteration count translates directly into a reduction in CPU time.
The e�ect of the jump stabilization formulations on the convergence rate for ICCG(0) has been
presented in Gresho and Sani [1; p:550] although the observed reduction in iteration count
was more modest. In both 2-D and 3-D, the gain due to stabilization is considerably more
modest when the convergence criteria is relaxed, e.g., �=10−5 is acceptable for production
computations.

The saddle-point solver

The possibility of solving a saddle-point problem in the context of either the projection-2 or
the explicit time integration algorithms was outlined in Section 2. The saddle-point problem
in Equation (19) suggests the application of an Uzawa iteration (see for example Fortin and
Glowinski [32]). This is not a new idea for the projection method – an early example of an

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1177–1198
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Figure 3. Convergence histories for SSOR preconditioned CG applied to (a) a 2-D Re=100 cylinder
�ow using coarse (2800 elements), medium (11 200 elements), and �ne resolution (44 800 elements)
grids; (b) an Re=100 �ow past a circular post attached to a �at plate using coarse (7840 elements),

medium (62 720 elements), and �ne resolution (211680 elements) grids (see Christon [22]).

‘Uzawa-like’ iteration appeared in Chorin [2] (see Equation 5(a) and (b)) for the solution of
the div-free velocity and associated pressure �eld in Chorin’s method.
The saddle-point solver considered here is an adaptation of the gradient-based Uzawa al-

gorithm of Thatcher [33] for the Stokes problem. The saddle-point solver in Algorithm (3)
is attractive because it reuses the standard �nite element operators (ML;C; CT ) permitting
the saddle-point problem to be solved in a ‘matrix-free’ mode. In terms of parallelism, the
algorithm may be used directly with an element-based domain decomposition requiring com-
munication for steps [3–5] and [8]. In addition, the allowable RMS divergence is used as the
convergence criterion linking the algorithm directly to the div-free constraint on the velocity
�eld—a physically appealing feature.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1177–1198
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The similarity between the saddle point problem and the Stokes problem is obvious—here
the usual viscous di�usion operator is replaced by a lumped mass matrix. In the context of
the Stokes problem, there has been considerable e�ort expended in obtaining fast iterative
solutions. Recent work in this area ranges from inexact and preconditioned Uzawa meth-
ods [34; 35] to two level pressure correction schemes [36] and stabilization techniques that
regularize the Stokes saddle point problem [37]. Vincent and Boyer [38] has identi�ed opti-
mal stabilization parameters for the Stokes problem using the Q1QO element for an Uzawa
iteration.

Algorithm 3. Saddle Point Solver

1. Set uk = ũn+1 for Algorithm (1), or uk = ãn for Algorithm (2).
2. Compute the divergence, CTuk , and the starting Lagrange multiplier,

�k =CTuk =diag(CTM−1
L C)

3. Adjust the current velocity (or acceleration) via uk = uk −M−1
L C�k .

4. Set gk =−CTuk and compute zk =M−1
L Cgk .

5. �k =− (uk)TCCTuk =(zk)TCCTuk .
6. �k+1 = �k − �kgk .
7. uk+1 = uk + �kzk

8. �k+1 =− (uk+1)TCCTuk+1=(uk)TCCTuk .
9. gk+1 =−CTuk+1 + �k+1gk

10. Repeat steps 3–9 until ‖CTuk+1‖RMS6�.

For the projection-2 algorithm, Algorithm (1) the saddle point solver begins with an initial
approximate velocity �eld, ũ, and terminates with a div-free velocity and associated Lagrange
multiplier, un+1 and �. In the explicit algorithm, Algorithm (2), the saddle-point solver begins
with the partial acceleration, ã, and terminates with a div-free acceleration and associated
pressure, an= {ãn −M−1

L CPn} and Pn.
Despite the apparent attractiveness of the saddle-point solver, it does not o�er any signi�cant

advantages over simply solving the consistent PPE problem. As pointed out by Thatcher
[33], Algorithm (3) is equivalent to applying the conjugate gradient method to the Schur
complement directly—in this case the consistent PPE. In fact, computational studies have
shown that the iteration count (and CPU time) required to solve the PPE and perform the
subsequent projection is nearly identical to the iteration count (and CPU time) required to
solve a �ow problem with the saddle-point solver. Here, the comparison was performed using
the PPE solution as a baseline and requiring that the saddle-point solver achieve the same
RMS divergence, i.e., ‖CTu‖RMS610−8. This result suggests a spectral equivalence between
the saddle-point algorithm and the conjugate gradient method applied directly to the PPE.
The saddle-point algorithm could be improved by the addition of a stabilization operator,
S, but this would also defeat its matrix-free form and incur additional computational and
communication costs in parallel.

Algebraic multi-grid

The fact that the condition number for the consistent PPE scales as h−2 and the right-hand-side,
CTu, is frequently noisy, i.e., it contains short-wavelength information in addition to long-

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1177–1198
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wavelength information, suggests that the use of multi-grid methods should be very attractive
due to the ability to obtain mesh independent convergence rates for elliptic problems. An
attempt to apply algebraic multi-grid (AMG) to the PPE using the solver of Ruge and Stuben
[39] has yielded promising results on simple problems such as an Re=100 lid driven cavity.
However, AMG has failed to be robust in general application. While an extensive investi-

gation of the failure of the solver has not been undertaken, it is clear that sign changes in the
row-entries of the PPE confound the automatic selection of the ‘strong connections’ used to
calculate the coarse-grid operators. This results in the generation of poor approximations of
the coarse-grid operators and either a complete failure to converge or such slow convergence
that the scheme is not useful.
It was also observed that the algebraic multi-grid-solver seemed particularly sensitive to

problems where irregular geometry was introduced—again apparently due to the selection of
incorrect ‘strong-connections’ for the coarse-grid operators. To illustrate this point, for the
standard 1760 element vortex shedding mesh [40], the AMG solver was approximately eight
times slower than a diagonally scaled conjugate gradient solver with an element-by-element
matrix-vector multiply. Relative to the resolve cost of the PVS variable-band solver [41; 42]
the AMG solver was 17 times slower per PPE solve. In addition to the performance, the
di�culties in extending the AMG initialization phase, i.e., computation of the coarse-grid op-
erators, to a domain-decomposition message-passing implementation appears insurmountable.
For this reason, this approach has not been pursued further.
Despite the somewhat disappointing results obtained with AMG it is believed that a native

�nite element implementation of the multi-grid method would be successful in treating the
PPE. This has not been undertaken at this time due to the inherent programming complexity
and restrictions on the mesh generation, i.e., the development of multi-level grids.

The projection CG method

The solution of the time-dependent incompressible Navier–Stokes equations requires the
repeated solution of the PPE problem where the coe�cient matrix is �xed and the right-
hand-side changes each time step. To address this aspect of solving the PPE, an A-conjugate
projection is integrated with the iterative solution of the PPE in order to use solution infor-
mation from the previous time steps. In the ensuing discussion, the PPE problem is cast as
Ax= b where A=CTM−1

L C or A=CTM−1
L C + S; x= � and b=CT ũ.

The use of an A-conjugate projection as a pre-processing step for the solution of the linear
system, Ax= b; follows the development presented by Fischer [43] with extensions that permit
seeding the A-conjugate vectors. Related work on solving linear systems with multiple right-
hand-sides may be found in Saad [44] and Chan and Wan [45].
To begin the development, the idea of a pre-processing A-conjugate projection step relies

on minimizing the distance between the solution at a given time step, xn, and the base vectors
	 in the A-norm. Here, 	 is a set of A-conjugate vectors derived from N prior solutions to
Ax= b where 	= {	i; i=1; N}. As will be demonstrated in Section 4, N =5 to N=10 is a
reasonable choice.
Let the initial ‘guess’ for a solution at time-step n be given by


x=
N∑
i=1


n	n (25)
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Let the di�erence between the solution at time-step n and the initial guess, 
x, be de�ned
as

‖e‖A= ‖xn − 
x‖A (26)

where ‖ · ‖A=
√
(·)TA(·).

With this de�nition,

‖xn − 
x‖2A=(xn)TAxn − 
xTAxn − (xn)TA 
x + (
x)TA 
x (27)

and for A being symmetric positive de�nite,

‖xn − 
x‖2A=(xn)TAxn − 2(xn)TA 
x + (
x)TA 
x (28)

Now, substituting Equation (25) and using the fact that 	 is a set of A-conjugate vectors,

‖e‖2A=(xn)TAxn − 2
N∑
i=1


i(	i)TAxn +
N∑
i=1


2i (29)

Minimization of ‖e‖A with respect to 
i yields


i=(	i)TAxn=(	i)T bn: (30)

Thus, given a set of A-conjugate vectors, 	, the best approximation to xn that minimizes
the error in the A-norm is obtained by projecting the right-hand-side, bn, at time-step n onto
the set of base vectors, 	. This suggests the following solution procedure.

Algorithm 4. A-conjugate projection CG method

1. 
i=(	i)T bn.
2. 
x=

∑N
i=1 
i	i where N is the number of A-conjugate base vectors.

3. Solve A�xn= rn using the conjugate gradient method where rn= bn − A 
x.
4. Update the solution, xn= 
x +�xn.
5. Update the base vectors, 	 to include new information from the last solution.

As an aside, the solution at a given time level may be written as

xn=�xn +
N∑
i=1


i	i (31)

Updating 	

For the initial solution, or when the number of existing base vectors exceeds N , the basis is
started by normalizing the solution as

	1 =
x1

‖x1‖A : (32)

For all other cases, a solution vector is a candidate for addition to 	 only when it contains
non-trivial information not already present in 	. Here, the basic idea is that �x is A-conjugate
to 
x as well as to the individual base vectors 	i. Therefore, the addition of a new base vector
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should be based on criteria that guarantee that new information is being added to the existing
base vectors. Addition of a solution vector (or a part of a solution vector) proceeds by �rst
computing the part of the solution that is not contained in the basis as

 l+1=xn −
l∑

i=1

i	i: (33)

Now, each 	i is A-conjugate to  l+1 by construction and is added to the basis as

	l+1=
 l+1

‖ l+1‖A : (34)

The idea of seeding the A-conjugate vectors in 	 with several initial vectors has been
suggested by Hughes [46] as a mechanism for reducing cost of the initial linear solves,
i.e., the �rst PPE solve when 	 is empty. This may be achieved by selecting several global
polynomials and even a random vector as seeds for 	. Construction of the A-conjugate vectors
in 	 proceeds according to the algorithm above.
Experimentation with vectors representing a random solution, hydrostatic and simple poly-

nomials have been tested with limited success. In the case of simple �ows, e.g., Pouiselle
�ow, the linear polynomials contribute directly to the initial solution and reduce the number of
CG iterates dramatically. However, in moderately complex domains, the simple polynomials
provide little reduction in computational cost. It is thought that initial polynomial �elds that
respect the implied pressure boundary conditions may provide an e�ective set of seed vectors,
but this has not yet been tested.
To illustrate the use of the A-conjugate projection, Plate 1(a) shows a snapshot of the

pressure �eld for an Re=100 vortex shedding computation. In addition, plate 1(b)–(f) shows
snapshots of the 	 vectors based on the previous �ve time steps. It is clear that 	1 provides
primarily long wavelength information while the other four vectors provide detailed informa-
tion about the wake. Thus, the vectors 	2−	5 may be viewed as short wavelength corrections
to 	1 that yield the best approximation to the current pressure �eld. The A-conjugate projec-
tion procedure, in e�ect, selects the appropriate information from each 	 vector in order to
minimize the residual in the A-norm before performing any CG iterations.
The A-conjugate projection procedure retains both long and short wavelength information,

and in this sense, the procedure may be viewed as an approximate means of de�ating the
eigenvalue spectrum for the PPE. The combination of the A-conjugate projection method, PPE
stabilization and SSOR preconditioning has proved to be the most computationally e�cient
method for solving the PPE.

4. RESULTS

This section presents the results of several representative computational experiments performed
using the A-conjugate projection strategy with several variants of the preconditioned conjugate
gradient method. In addition, the e�ect of pressure stabilization on the iterative solvers is
considered for both local and global stabilization. Scaled parallel e�ciencies are presented to
illustrate the in�uence of the PPE solution strategy on the parallel performance.
The CG variants used in this study include a Jacobi preconditioned conjugate gradient

(JPCG) solver, a symmetric successive over-relaxation preconditioned CG method (SSOR-
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PCG), and the Eisenstat-SSOR CG solver (ESSOR-PCG). Each CG solver used a row-
compressed storage scheme for the PPE. The SSOR preconditioners were implemented in a
stand-alone form (SSOR-PCG) that requires separate matrix-vector and preconditioning func-
tions, and in the ESSOR-PCG form using the transformation �rst suggested by Eisenstat [47]
to reduce the operation count required for the preconditioned conjugate gradient method. (See
also Ortega [48] and Eisenstat et al. [49].)
The �rst series of computations used to evaluate the PPE solution methods were carried

out for a momentum driven slot jet with Reynolds number Re=4000 and Froude number
Fr=326. The Reynolds number is based on a 15 mm slot width and the Froude number is
based on Fr=v2=g��TLc where g=9:81 m s−2, ��T=1=3; Lc=15 mm, and v=4 m s−1. In
this computation, an energy equation was solved in conjunction with the Navier–Stokes equa-
tions using the Boussinesq approximation. The formulation follows that presented by Gresho
et al. [21, Equation 1(a)–(c)]. The initial conditions consist of a div-free velocity �eld with
a free-�eld temperature of 300 K. The inlet jet velocity is 4 m s−1 and the inlet temperature
is 400K. The working �uid is air with a unit Prandtl number, Pr=�=
 resulting in Pe=4000
where Pe=RePr. Here, the relatively large Froude number indicates that the buoyancy forces
are small compared to the inertial forces, i.e., a momentum driven jet. Plate 2 shows snapshots
of the temperature, vorticity and pressure �elds.
Tables I and II show the results of the jet computations in terms of the average iteration

count, grind time, and percentage of the CPU time spent solving the PPE averaged over 1000
time steps. Here, the grind-times are normalized with respect to the grind-time for the same
computation using the PVS [41; 42] direct solver for the PPE where a single factorization
is performed during initialization with a single resolve carried out at each time step. All
computations in this comparison were performed using a 500 MHz single processor DEC
Alpha with �=10−5 as the iterative convergence criteria for the PPE solution and �=0:05
for the stabilization parameter.
With the direct resolve cost of the PVS solver as the baseline metric, the ideal situation

would be to have a normalized grind-time using the iterative PPE solvers that matches or
even beats the resolve cost for the PVS solver. Note that the CPU time associated with the
direct resolve scales roughly as Nel×Nb where Nb is the half-bandwidth of the PPE.
For both the explicit and semi-implicit projection algorithms, there is little apparent e�ect

of the stabilization parameter for the 2-D jet problem—undoubtedly a consequence of using
�=10−5 for the convergence criteria. However, the SSOR preconditioning reduces the iteration
count by nearly a factor of three without the A-conjugate projection. The use of the Eisenstat
formulation further reduces the grind-time by a factor of approximately 1.5 relative to the
SSOR-PCG solver. The e�ect of the A-conjugate projection algorithm is seen in the reduction
in the iteration count by nearly a factor of three and the grind-time by nearly a factor of
three regardless of the preconditioner for the explicit algorithm when �ve projection vectors
are used. For the semi-implicit projection algorithm, this e�ect is reduced somewhat resulting
in a factor of about 2.25 reduction in the iteration count and better than a factor of two
reduction in the grind-time.
The combination of the ESSOR-PCG algorithm and 10 projection vectors results in grind-

times for the explicit algorithm that are within a factor of three of the grind-times using the
PVS solver. For the projection algorithm, the grind-times are within a factor of two empha-
sizing the additional cost of the semi-implicit treatment of the momentum and scalar transport
equations. Relative to the basic JPCG solver the ESSOR-PCG solver with 10 projection vec-
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Table I. E�ect of the A-Conjugate projection on the PPE solution time for the 2-D momentum
driven jet. The grind-times for the explicit algorithm have been normalized with respect to the
solution time for 1000 time steps using a direct solver [41; 42]. NIT is the average number of
iterations required per time step to solve the PPE problem. (Nel=11 250, Nnp=11 466, Nb=146).

Explicit Algorithm—No Stabilization

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 353 26.52 98.9 120 19.89 98.5 109 12.22 97.3
5 114 8.81 96.8 38 6.65 95.7 35 4.20 92.2
10 82 5.55 94.4 28 4.47 90.4 26 2.97 88.2
25 55 4.48 93.6 19 3.68 91.7 17 2.53 86.7
50 45 3.99 92.7 16 3.58 91.9 14 2.33 85.7

Explicit Algorithm—Global Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 340 24.92 98.8 115 19.23 98.3 107 12.06 97.1
5 109 8.41 96.5 36 6.21 94.9 33 4.02 91.5
10 79 5.33 93.9 26 4.32 92.0 24 2.88 87.3
25 52 4.24 92.7 18 3.47 90.6 16 2.42 85.3
50 42 3.76 91.9 14 3.06 89.4 13 2.21 84.2

Explicit Algorithm—Local Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 291 21.44 98.7 99 16.55 98.1 91 10.35 96.8
5 120 9.27 97.0 40 6.84 95.5 36 4.31 92.5
10 89 5.96 94.7 30 4.80 93.0 27 3.19 88.7
25 62 4.96 94.2 21 3.98 92.1 19 2.73 87.4
50 50 4.31 93.1 17 3.46 90.8 15 2.47 86.1

tors results in a factor of nine reduction in the normalized grind-time for the explicit algorithm
and nearly a factor of four reduction for the projection algorithm. It is important to note that
in two-dimensions, the storage cost of 10 projection vectors is equivalent to the storage cost
of a separate preconditioning matrix. Although further reductions in the grind-times may be
had with increasing number of projection vectors, the storage cost and diminishing reduction
in the computational costs makes this less attractive. Even when 50 projection vectors are
used, the percentage of the CPU time per time step spent on the PPE solution cannot be
pushed below ≈85% for the explicit algorithm. In contrast, 10 projection vectors reduces the
average cost of solving the PPE to be approximately equal to the cost of solving the two
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Table II. E�ect of the A-Conjugate projection on the PPE solution time for the 2-D momentum driven jet.
The grind-times for the projection algorithm have been normalized with respect to the solution time for 1000
time steps using a direct solver [41; 42]. NIT is the average number of iterations required per time step to

solve the PPE problem. (Nel=11 250, Nnp=11 466, Nb=146).

Projection-2 Algorithm—No Stabilization

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 328 6.52 87.4 110 5.05 83.6 100 3.36 74.7
5 148 3.20 75.0 49 2.63 69.4 47 2.02 59.7
10 121 2.53 66.5 41 2.13 59.9 38 1.75 51.1
25 100 2.66 69.4 34 2.18 62.3 31 1.71 51.7
50 87 2.39 66.6 29 2.03 60.4 26 1.60 49.2

Projection-2 Algorithm—Global Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 309 6.16 86.6 105 4.83 82.8 96 3.23 74.0
5 130 2.91 72.4 43 2.39 66.2 44 1.87 56.2
10 108 2.35 63.7 36 1.98 56.8 37 1.68 48.1
25 88 2.44 66.5 29 2.00 58.8 27 1.65 49.4
50 76 2.20 63.7 26 1.92 57.9 23 1.52 45.9

Projection-2 Algorithm – Local Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 309 6.52 86.6 105 4.95 82.8 96 3.27 74.0
5 130 3.11 72.4 43 2.53 66.2 44 1.93 56.2
10 108 2.47 63.7 36 2.07 56.8 37 1.73 48.1
25 88 2.61 66.5 29 2.09 58.8 29 1.69 49.4
50 76 2.36 63.7 26 2.04 57.9 25 1.58 46.0

semi-implicit momentum equations and the scalar transport equation, i.e., 50% of the CPU
time per step.
The second series of computations were carried out for a three-dimensional channel �ow

past a circular cylinder with ReD=100. This problem was motivated by a suite of benchmark
problems used as ‘round-robin’ tests to evaluate incompressible �ow solution methods devel-
oped under the Deutsche Forschungsgemeinschaft (DFG) Priority Research Program, ‘Flow
Simulation on High Performance Computers’. In this computation, a parabolic velocity pro-
�le is prescribed at the inlet to the channel with no-slip=no-penetration boundaries on the
channel and cylinder walls. Natural boundary conditions were used at the channel out�ow.
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The prescription of u · n=0 on the channel walls results in a two-dimensional checkerboard
pressure mode that exists in each plane of three-dimensional elements normal to the �ow
direction. In this situation, pressure stabilization is essential to �lter the checkerboard modes.
Note that solving the unstabilized PPE is possible, but it requires an extremely large number
of iterations, O(102 − 103), per time step. For this reason, all computations were performed
using the pressure stabilization methods outlined in Section 3. Plate 3 shows snapshots of the
3-D z-vorticity �eld and the corresponding pressure �eld for this problem.
Table III reports the grind-times, iteration counts, and percentage of CPU time spent solv-

ing the PPE per time-step for the channel �ow problem. The trends with respect to the
preconditioners and number of projection vectors is similar in 3-D to the 2-D results. The
most obvious di�erence here being the increase in the resolve cost of the direct method due
to the relatively large half-bandwidth found with a reordering based on the Gibbs–Poole–
Stockmeyer bandwidth minimization with reverse Cuthill–McKee numbering. Due to the rel-
atively minimal computational costs associated with solving the momentum equations in the
explicit algorithm, the PPE solve requires better than 55% of the CPU time per step. The
best balance between memory usage and grind-times are found using the ESSOR-PCG solver
combined with 10 projection vectors where a speedup by a factor of 3.6 to 3.8 relative to
the basic JPCG solver applied to the stabilized PPE is observed. With 50 projection vectors,
the average of the PPE solve requires only about 85% of the CPU time required for the direct
resolve cost using the PVS solver. This is undoubtedly a consequence of the relatively large
half-bandwidth of the 3-D system.
The projection method exhibits larger computational costs associated with the momentum

transport equations as shown by the percentage of time for the PPE in Table III(b). In this
case, 10 projection vectors with the ESSOR-PCG solver yield normalized grind times of
just over unity with the PPE requiring less than 25% of the CPU time per step. That is to
say, the cost of the PPE solve is approximately equal to the cost of solving one component
of the momentum equations—here the JPCG algorithm is used for the momentum transport
equations.
Now, turning to the parallel situation, a comparison between the element-by-element Jacobi

preconditioned CG solver reported by Christon [22] and a sub-domain SSOR preconditioned
CG solver with and without 10 projection vectors was conducted. The results of the compar-
ison are shown in Figure 4(a) for an ReH=800 backward facing step using 250 elements per
processor. In Figure 4(b), scaling results are shown for a 3-D �ow past a post-plate juncture
(ReD=100) also computed with 250 element per processor. Note that the small number of
elements per processor was chosen intentionally in order to show a worst case scenario where
the communication costs are large and the computational load per processor is small. All par-
allel computations were carried out on the ASCI Red TFLOPs computer at Sandia National
Laboratories.
For both the 2-D and 3-D computations, a marked reduction in the overhead associated with

communication is observed when using 10 projection vectors with either the EBE-JPCG or
the SSOR-PCG algorithms. The overall e�ciency of the SSOR-PCG algorithm is higher due
to the increased and perfectly parallel work introduced by the sub-domain preconditioner. As
the number of processors is increased, the e�ect of the A-conjugate projection becomes more
pronounced due in part to the reduced overall iteration count and concomitant communication
requirements. With an increasing number of processors, the e�ect of the A-conjugate projection
technique is to remove the long wavelength error components from the solution permitting
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Table III. E�ect of the A-Conjugate projection on the PPE solution time for the 3-D cylinder vortex shed-
ding problem. The grind-times have been normalized with respect to the solution time for 1000 time steps
using a direct solver [41; 42]. NIT is the average number of iterations required per time step to solve

the PPE problem. (Nel=53 900, Nnp=58 916, Nb=2239).
(a) Explicit Algorithm

Explicit Algorithm—Global Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 64 4.88 64.8 22 4.00 64.3 20 2.59 62.9
5 37 2.91 63.5 12 2.29 62.6 12 1.61 60.8
10 31 2.49 63.0 10 1.95 61.9 9 1.33 59.5
25 22 1.83 61.5 7 1.43 60.0 7 0.98 57.0
50 17 1.46 60.3 6 1.17 58.5 5 0.83 55.1

Explicit Algorithm—Local Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 62 4.17 64.7 22 3.86 64.3 19 2.49 62.7
5 38 2.98 63.6 13 2.32 62.5 11 1.50 60.5
10 30 2.38 62.8 10 1.84 61.5 9 1.23 58.9
25 22 1.92 61.5 7 1.40 59.9 6 0.95 56.8
50 18 1.54 60.6 6 1.18 58.8 5 0.85 55.4

(b) Projection Algorithm

Projection-2 Algorithm—Global Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 63 1.54 43.8 20 1.24 36.4 19 1.12 28.3
5 49 1.34 38.4 16 1.15 31.3 14 1.04 23.9
10 42 1.20 34.9 13 1.10 28.2 12 1.01 21.6
25 36 1.16 31.7 12 1.06 25.7 10 0.99 19.8
50 33 1.14 30.7 11 1.05 24.9 10 0.99 19.4

Projection-2 Algorithm—Local Jump Stabilization (�=0:05)

JPCG SSOR-PCG ESSOR-PCG

No. of NIT Grind % PPE NIT Grind % PPE NIT Grind % PPE
Vectors Time Time Time

0 67 1.43 45.0 21 1.26 37.6 20 1.12 29.5
5 51 1.30 39.0 16 1.16 32.1 15 1.05 24.7
10 44 1.10 35.8 14 1.11 28.9 13 1.02 22.3
25 39 1.06 32.8 12 1.08 26.6 11 1.00 20.5
50 36 1.05 31.9 11 1.07 25.8 10 0.99 20.1
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Figure 4. Scaled e�ciencies for (a) 2-D Re=100 vortex shedding problem, and
(b) Re=100 post and plate juncture �ow [22].

the sub-domain preconditioner to operate only on the short wavelength components where it
can be e�ective.
In order to further illustrate the impact of the A-conjugate projection technique in combina-

tion with the SSOR preconditioned conjugate-gradient method and a stabilized PPE operator,
two large-eddy simulation computations are reported. The �rst is an Re=10000 lid-driven
cavity which uses a 32×32×32 mesh modeled after the grid used by Zang et al. [50] and a
Smagorinsky model. In this computation, approximately 1500 eddy-turnover times were sim-
ulated resulting in an average iteration count of 11 iterations per PPE solve for a PPE with
32 768 equations using the explicit algorithm. Similar iteration counts have been observed
for the projection algorithm. The second computation consists of a three-dimensional transi-
tional round jet with ReD=2500 based on the jet diameter and a computational domain 20 D
in diameter extending 30 D downstream from the jet entrance. This computation used 512
processors of the Sandia TFLOPs machine with a total of 1 049 600 elements. In this case,
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the use of 10 projection vectors with the global jump stabilization resulted in an average
of only 34 iterations per time step demonstrating the scalability of the projection-based CG
method.

5. CONCLUSIONS

Based on the results for a broad range of �ow problems (too many to report on here),
the use of a stabilized consistent pressure-Poisson operator, an A-conjugate projection tech-
nique, and SSOR preconditioning with the conjugate gradient method yields the overall best
performance relative to the resolve cost of a direct solver. The e�ect of the A-conjugate
projection technique is to introduce both long and short wavelength information which, in
e�ect de�ates the eigenvalue spectrum of the PPE. This e�ect not only reduces the iteration
count and concomitant computational cost but is seen to improve the e�ectiveness of sim-
ple sub-domain parallel preconditioners that are e�ective for wavelengths proportional to the
sub-domain size but that cannot smooth error modes that span sub-domains.
Operational experience with both the global and local pressure stabilization formulations

has shown that either approach is e�ective in terms of �ltering spurious pressure modes and
improving the overall robustness of the computations. Although there is a modest reduction in
the PPE solution time when using the pressure stabilization, the larger computational advan-
tage derives from the A-conjugate projection CG algorithm. Ultimately, the combination of
the pressure stabilization with preconditioning and the A-conjugate projection technique has
proven both robust and computationally e�cient making it a reasonable alternative to more
complicated approaches based on multi-grid or multi-level algorithms for time-dependent prob-
lems.
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Plate 1. (a) Snapshot of the pressure �eld during vortex shedding, and �ve 	-�elds (b)–(f) based on
pressure solution at the �ve prior time steps.
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Plate 2. Snapshot of (a) temperature �eld, (b) z-vorticity �eld and (c) pressure for the 2-D momentum
driven jet, Re=4000, Fr=326. (The temperature, vorticity and pressure �elds have been re�ected about

the vertical centerline for presentation purposes.)
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Plate 3. Snapshot of (a) cutplane showing the z-vorticity �eld and (b) isosurfaces of the pressure
for the 3-D cylinder in a channel for ReD=100.
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